Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 15-18, 2015.
Article in Chinese | WPRIM | ID: wpr-950892

ABSTRACT

Objective: To investigate the vasodilatory effect of Thymus serrulatus (T. serrulatus) aqueous leaf extract on KCl (high K

2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 373-381, 2014.
Article in Chinese | WPRIM | ID: wpr-500589

ABSTRACT

Objective: To investigate effect of essential oils on Aspergillus spore germination, growth and mycotoxin production.Method: In vitro antifungal and antiaflatoxigenic activity of essential oils was carried out using poisoned food techniques, spore germination assay, agar dilution assay, and aflatoxin arresting assay on toxigenic strains of Aspergillus species.Results: Cymbopogon martinii, Foeniculum vulgare and Trachyspermum ammi (T. ammi) essential oils were tested against toxicogenic isolates of Aspergillus species. T. ammi oil showed highest antifungal activity. Absolute mycelial inhibition was recorded at 1 μl/mL by essential oils of T. ammi. The oil also showed, complete inhibition of spore germination at a concentration of 2 μl/mL. In addition, T. ammi oil showed significant antiaflatoxigenic potency by totally inhibiting aflatoxin production from Aspergillus niger and Aspergillus flavus at 0.5 and 0.75 μl/mL, respectively. Cymbopogon martinii, Foeniculum vulgare and T. ammi oils as antifungal were found superior over synthetic preservative. Moreover, a concentration of 5 336.297 μl/kg body weight was recorded for LC50 on mice indicating the low mammalian toxicity and strengthening its traditional reputations.Conclusions:In conclusion, the essential oils from T. ammi can be a potential source of safe natural food preservative for food commodities contamination by storage fungi.

3.
Asian Pacific Journal of Tropical Biomedicine ; (12): S373-81, 2014.
Article in English | WPRIM | ID: wpr-343250

ABSTRACT

<p><b>OBJECTIVE</b>To investigate effect of essential oils on Aspergillus spore germination, growth and mycotoxin production.</p><p><b>METHOD</b>In vitro antifungal and antiaflatoxigenic activity of essential oils was carried out using poisoned food techniques, spore germination assay, agar dilution assay, and aflatoxin arresting assay on toxigenic strains of Aspergillus species.</p><p><b>RESULTS</b>Cymbopogon martinii, Foeniculum vulgare and Trachyspermum ammi (T. ammi) essential oils were tested against toxicogenic isolates of Aspergillus species. T. ammi oil showed highest antifungal activity. Absolute mycelial inhibition was recorded at 1 µl/mL by essential oils of T. ammi. The oil also showed, complete inhibition of spore germination at a concentration of 2 µl/mL. In addition, T. ammi oil showed significant antiaflatoxigenic potency by totally inhibiting aflatoxin production from Aspergillus niger and Aspergillus flavus at 0.5 and 0.75 µl/mL, respectively. Cymbopogon martinii, Foeniculum vulgare and T. ammi oils as antifungal were found superior over synthetic preservative. Moreover, a concentration of 5 336.297 µl/kg body weight was recorded for LC50 on mice indicating the low mammalian toxicity and strengthening its traditional reputations.</p><p><b>CONCLUSIONS</b>In conclusion, the essential oils from T. ammi can be a potential source of safe natural food preservative for food commodities contamination by storage fungi.</p>

4.
Asian Pacific Journal of Tropical Biomedicine ; (12): 1606-1610, 2012.
Article in Chinese | WPRIM | ID: wpr-499648

ABSTRACT

Objective: The present study was conducted to evaluate the antihyperglycemic activity on chronic administration of the butanol fraction of the ethanol extract of Moringa Stenopetala leaves in alloxan induced diabetic mice. Methods: The mice were grouped in four groups; Normal control, Diabetic control, Butanol fraction treated and standard drug treated groups. The Diabetic mice received the butanol fraction of Moringa stenopetala daily for 28 days. Results: The butanol fraction of Moringastenopetala treatment resulted in significant reduction of fasting blood glucose level, serum total cholesterol and triglycerides level. This fraction also showed a tendency to improve body weight gain in diabetic mice. Its oral LD50 was found to be greater than 5000mg/Kg indicating its safety in mice. Conclusions: Though the mechanism of action of Moringa stenopetala seems to be similar to that of sulfonylureas, further studies should be done to confirm its mechanism of antidiabetic action. Furthermore the active principle(s) responsible for the antidabetic effects should also be identified.

SELECTION OF CITATIONS
SEARCH DETAIL